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Glossary  

Acronyms 

 

 

 

 

 

 

 

 

Definitions 

Shorthand Expression 

RL Reinforcement learning 

ML Machine Learning 

AI Artificial Intelligence 

MPC Model Predictive Control 

EV Electric Vehicle 

DSR Demand Side Response 

DHW Domestic Hot Water 

HVAC Heating, Ventilation and Air Conditioning 

 

Term Definition 

AI A form of automation where computers can perform tasks which would 

otherwise require human intelligence. Encompasses fields such as ML, 

optimisation, making predictions/forecasting, analysis and much more.  

ML Methods by which computers can derive information without an explicit 

set of instructions. 

Digital Twin A digital model which integrates two-way data flow between the model 

and physical object or system. Making a change to one can change the 

other.  

Transfer 

Learning 

Transfer learning is a field of research in machine learning that centres 

on retaining the knowledge acquired from solving one problem and 

utilizing it to address a different but connected problem. As an 

illustration, the knowledge acquired from identifying cars could be 

transferred and utilised to identify trucks. 

Online learning Learning while interacting with the real physical environment. 

Offline learning Learning prior to interacting with the real physical environment. For the 

purpose of this paper, that could be learning from historical data logs, 

using a Digital Twin, or from a source environment and using it for 

transfer learning. 

Stochasticity  A probability distribution or pattern that is subject to statistical analysis 

but cannot be accurately predicted, due to its random nature. 

DSR Demand-side response: energy consumers altering their energy 

consumption behaviour in response to large-scale demand on the grid.  

Model Predictive 

Control 

Iterative optimal control technique which minimises a cost function 

which evaluates future states within a horizon, whilst manipulating 

variable inputs which define behaviours across a given time interval.  
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1. Executive summary 

Reinforcement learning (RL) is a branch of machine learning (ML) that focuses on optimal decision 

making through trial and error— analogous to a child exploring and learning in their surrounding 

world. We are starting to see promising applications of RL for control systems within the energy 

sector, including Deepmind’s cooling systems [1], and Carbon Re’s cement production [2]. In 

addition, recent advances in ‘Reinforcement Learning from Human Feedback’ (e.g. in refining the 

ChatGPT core model to respond more appropriately) have the potential to support embedding of 

expert knowledge and consumer preferences into existing energy sector models. It is an exciting 

time for RL within the energy sector, but it is still early days and much of the knowledge exists in 

highly technical academic literature or is seldom shared by industry. Therefore, this paper aims to 

bridge a gap between industry and academia by presenting the most salient advantages and 

challenges of RL, providing a framework to guide the reader on how to scope an RL approach to a 

given problem, and highlighting the landscape of near-term and future applications through a 

series of industry and academic use cases. We hope to encourage innovators to see the potential 

for RL within the energy sector. 

Here we summarise key takeaways from this paper: 

1) RL is primarily useful for optimal decision making and control within complex systems which have 

underlying uncertainty or randomness within the system. It is an attractive approach owing to several 

advantages it holds over alternative methods:  

Key advantages of RL 

 

 

 

 

 

 

 

 

 

2) Drawing from a review of the literature, use cases, and expert consultation, we provide a general 

framework below for using RL for a particular application:  

Framework for using RL 

 

RL problem 
framing

Does the application 
have the essentials 
(states, actions, 
rewards)? Is there 
frequent feedback and 
large amounts of data?

RL or 
alternative?

Is the system highly 
complex (e.g., 
uncertainty, difficult to 
model)? Are quick 
decisions required? Are 
marginal improvements 
likely to result in high 
returns?

Start simple 
and 

experiment
Consider human in the 
loop solutions where a 
user impliments or 
overrides RL 
recommended actions. 
Also, start with pilot 
projects.

Collaborate
Collaborate with users, 
stakeholders, and 
experts (e.g., with RL 
and domain specific 
expertise). This is 
particularly important 
for identifying and 
managing key risks.

 

Complex 

systems 

RL can handle complex 

systems that are difficult 

to model. 

 

Quick decision 

making 

Computations can occur 

prior to deployment 

when the algorithm is 

learning. Once 

deployed, quick 

decisions are made in 

real time. 

 

Uncertainty 

RL naturally handles 

uncertainty, which is 

often more restrictive in 

alternative methods. 

 

Human 

feedback 

Human feedback and 

preferences can be 

incorporated, which is 

difficult to capture in 

alternative methods. 
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3) RL has potential to help create a more flexible, low-carbon approach to using energy. In Sections 6 

and 7, we present a range of use cases drawing from both the industry examples and use cases 

demonstrated in academic literature. Below we show an overview of the potential near-term and 

future applications of RL in the energy sector. RL has been used in general business problems, which 

can indirectly benefit the energy sector (e.g. improving customer journeys using recommender 

systems). It has also had direct impact on the energy sector through industrial/commercial control 

systems. Domestic and large-scale applications tend to remain in the research phase, as there are 

stricter safety, regulatory and security hurdles to overcome. 

 

Landscape for RL applications 

4) It's important to recognise that RL is still a developing field and faces many challenges centred 

around safety, practical/technical limitations, and the need for confidence and trust. 

 

Key challenges of RL 

 

 

 

 

 

 

 

 

 

 

 

Who is this paper for? 

This paper is designed as a useful guide for business leaders within the energy sector considering 

experimenting with RL or RL practitioners outside of energy who might be interested in making 

impact in the energy space. We conclude with two calls to action: 

• Industry: As much as possible, share challenges and successes of real-world implementations of RL 

to inform future applications — see Deepmind’s work [3] as an example. Consider sharing datasets 

that can be used to develop RL solutions. 

• Academia: Conduct fair comparisons between RL and alternatives to better understand where RL 

might excel in the future and understand how they can potentially complement each other. 

Future 

Have been implemented in industry 

Are yet to be deployed in industry 

Near-term 

Learning with 

limited data 

Real-world systems are 

limited in data 

generation, unlike 

simulating millions of 

games like AlphaGo. 

Real-world 

consequences 

and safety 

constraints 

Real-world systems 

present safety risks to 

equipment and users 

that are not present in 

virtual environments. 

Offline 

learning 

Learning from historical 

data logs can reduce 

safety risks by reducing 

interactions with the 

physical environment 

but is often limited in 

how much can be learnt.  

Interpretability 

and reliability 

Users often require 

interpretable solutions 

for reassurance, but RL 

is often a black box. RL 

can also result in 

occasional extreme 

behavior in an 

unpredictable way. 

General 
business 
problems

Recommender systems

Industrial/ 
commercial 

control systems
Data centre cooling, 

industrial process 
control 

Domestic 
energy 

management
DSR, HVAC control, EV 

charging scheduling

Large-scale 
energy systems
Power networks, smart 

grids
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2. Introduction  

Reinforcement Learning (RL) is a type of Machine learning (ML) and Artificial Intelligence (AI). AI 

and ML have gained vast amounts of attention in the last decade due to their ability to transform 

various sectors and create business value. Examples include the facial recognition algorithms used 

by Apple and language translation used by Google. More recently, ML has been transforming the 

energy sector [4] with applications in solar photovoltaic forecasting [5] and in segmenting 

customers for custom energy tariffs utilising smart meter data [6]. 

Many of these applications are only achievable due to the breakthroughs in deep neural networks 

in 2012 [7] and increases in computational power. Huge progress was further made upon the 

invention of the transformer [8] in 2017 leading to breakthroughs in human-like large language 

models like OpenAI’s GPT-3, which can generate poems, stories and even code. Transformers also 

enabled the development of Deepmind’s Alphafold [9], solving the decades-long challenge of 

protein folding, which can help tackle diseases and discover new medicines faster. 

The examples described above fall under branches of ML known as supervised and unsupervised 

learning. RL examples are less common but, nonetheless, RL offers the potential to provide 

powerful solutions to industry problems. RL has been most notably recognised in the application of 

game playing with Google Deepmind’s AlphaGo. AlphaGo involved training RL on thousands of 

amateur Go games (and later millions more playing against itself) until it could consistently beat 

the top human Go players. It discovered effective Go strategies not previously used by human 

players – strategies human players are now starting to adopt. 

More recently, the use of RL to refine text generation outputs has helped propel language 

generation models like ChatGPT into the mainstream. The Large Language Model that underpins 

ChatGPT was primarily developed using other forms of ML but in its raw form it often struggled to 

align its outputs with human intent and values. One of ChatGPT’s critical breakthroughs was to use 

RL to incorporate human feedback into that base model. Whilst generative models like ChatGPT 

themselves have many potential uses in the energy sector (which are largely outside the scope of 

this report), this approach of incorporating human feedback into models using RL could also offer 

significant benefits to applications in the sector. 

With the increasing success of ML applications in the energy sector and the progress in RL 

applications, now is an appropriate time to review the current state of RL applications within the 

energy sector. At the same time, Digital Twin technologies have been emerging which can greatly 

compliment and enable RL. This paper presents an overview of RL (Section 3), its associated 

challenges (Section 3.1)/potential solutions (Section 3.2), and alternative methodologies (Section 

3.3). We provide guidance for innovators and organizations to start thinking about how RL can 

transform the sector in the near and long-term future (Sections 4 and 5). Sections 6 and 7 highlight 

promising use cases in industry and discuss where there is expected to be the most potential over 

the next several years as algorithms and computational methods become increasingly advanced. 

These risks and ethical considerations involved in deploying RL are considered in Section 8, along 

with an illustrative example in the energy sector. Lastly, we conclude in Section 9 with a call to 

action for industry and academia. 

Our purpose is to bridge the gap between industry and academia since academic literature reviews 

are technical, making it difficult for a non-specialist to easily draw insight from them, and often do 

not reference industry examples. Conversely, industry material is often marketing focused and thus 

shies away from discussing the nuances/challenges. 
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3. Reinforcement Learning theory  

Reinforcement Learning is a type of Machine learning and Artificial Intelligence that focuses on 

sequential decision-making tasks to maximise a numeric goal. Figure 1 illustrates the key 

differences between other ML methods (e.g. supervised and unsupervised learning) and RL. The 

former methods learn by identifying trends or patterns in a dataset to build a generalised model to 

make predictions from new, unseen data. RL, on the other hand, focuses on control and learns by 

interacting with its external environment through a trial-and-error based approach.   

 

Figure 1: Branches of ML and their example uses cases in the field of energy. 

In comparison to RL, supervised learning applications, such as predicting solar power, have a clear 

correct answer that the algorithm will try to predict—the actual power output. RL problems, on the 

other hand, do not have an obvious unique answer. Using chess as an example, it is not clear what 

the correct move is, but if you have a long-term goal (winning) then you can learn through trial and 

error which moves are likely to result in a win—similar to how humans learn. 

More formally, an RL problem consists of an agent interacting with an environment that learns to 

maximise some objective. It consists of three main components:  

• States: this provides a picture of what the agent sees in its surrounding environment (e.g. location of 

pieces on chess board). 

• Actions: physical changes that the agent can take (e.g. possible pieces to move). 

• Rewards: feedback signals processed by the agent. The agent acts to maximise the expected future 

cumulative reward signal.  

The agent observes the state of its environment, takes certain actions within its environments, and 

receives a reward (good or bad) based on its actions; it then tries to maximise its long-term 

rewards as it learns through trial and error (Figure 2). The final output is known as a policy, which is 

an instruction for the agent to follow by looking at the current state of its environment and 

deciding which action to take next. 

Supervised

Learning

Unsupervised

Learning

Reinforcement 
Learning

Machine 

Learning 

• Models built by fitting to a dataset 

with known answers (labels). 

• Energy applications: forecasting; 

predictive maintenance, non-

intrusive load monitoring 

 

• Model built without 

labelled data through 

pattern recognition. 

• Energy application: 

consumer segmentation. 

 

• Learns optimal actions 

through environment 

interaction. 

• Energy application: control 

and management of energy 

systems. 
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Figure 2: Reinforcement learning schematic 

RL algorithms can be classified as either model-free or model-based. Model-free RL does not 

contain an internal model of the environment that is used to predict changes in state that will 

result from actions – instead it relies on associations between actions and rewards that have been 

learned by trial and error. Note that an external ‘model’ of the environment (e.g. a Digital Twin) can 

be used to repeatedly simulate taking actions and the resulting reward in order to train the model-

free RL, but this remains external to the RL agent; the model-free RL agent is agnostic as to 

whether the environment is real or a Digital Twin. 

Conversely, model-based RL contains an internal model of how likely different actions are to cause 

transitions into different states. It uses this to do forward-looking short-term predictions of the 

rewards from various actions and factor these into its decision-making alongside the learned 

rewards from historical actions. This model of action-state transition probabilities and associated 

rewards can be defined based on expert knowledge, or trained using supervised learning based on 

historical transition data. 

Model-free RL offers some advantages due to its high flexibility, as it does not require any prior 

knowledge of the problem (i.e. a model). On the other hand, model-based RL, although less 

common, is gaining popularity since often it requires less data and can provide greater robustness 

and interpretability. 

3.1. CHALLENGES IN RL 

Whilst RL shows great promise, it does not come without its challenges. The implementation of RL 

in real-world applications faces challenges that are not typically present in virtual applications like 

game playing (e.g. AlphaGo). These challenges have been documented in several sources [10]–[13]  

and we have summarised a non-exhaustive list of the main challenges faced when applying RL in 

the energy sector. Note, many of these challenges are not exclusive to RL; data-driven alternative 

methods are often subject to similar challenges. Throughout Sections 6 and 7, we describe how 

these challenges impact specific use cases of RL in the energy sector.  

Challenges: 

• Learning with limited data  

• Real-world consequences and safety constraints 

• Offline learning 

• Interpretability and reliability 

Learning with limited data 

Unlike virtual applications like game playing (e.g. AlphaGo), real systems are constrained by the 

sampling frequency of a physical decision-making process. When the agent is interacting with the 

physical environment, it cannot speed up time and collect vast amounts of data in the same way as 

simulating millions of games. Therefore, sample efficient algorithms are incredibly important; that 
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is, algorithms that can learn faster with less data. It is usually not practical to wait several years for 

an RL agent to learn to perform optimally.  

Real-world consequences and safety constraints 

Real-world problems have safety, security, and economic consequences that are not present with 

virtual problems like AlphaGo. Therefore, safety constraints need to be imposed, or a human needs 

to interpret the recommended actions and act accordingly. However, the need for exploration is 

essential for RL to find the true optimal solution; this often requires suboptimal actions to be taken, 

which can result in these unacceptable consequences. Imposed constraints can limit exploration 

and can result in a suboptimal solution. Additionally, complex safety constraints can be difficult to 

quantify and can lead to unintended consequences [14], and so cannot guarantee against 

violations. Furthermore, in a complex environment it becomes difficult for a human to define a 

solid reward function without loopholes that the agent may slip through – as demonstrated by this 

list of examples [15]. Before the RL solution is deployed on large-scale in the real world, any 

potentially dangerous actions the agent may take whilst going through these loopholes need to 

have been identified. 

Safety and ethics should also be a consideration when developing an RL solution. This could come 

from the study of the behaviour of humans in response to RL. For example, if an RL agent is given a 

goal, the agent does not care whether it is exploiting human psychological vulnerabilities to 

maximise that goal, so developers have a responsibility to ensure negative human responses are 

not invoked because of the RL [16]. See section 8 for a further discussion on this. 

Offline learning 

For the purpose of this paper, online learning or an online deployment refers to the controller 

being utilised on the live physical system. In the case of online learning, the RL agent interacts with 

the physical system and collects real-time data to learn from. In contrast to this, RL can also learn 

offline without directly interacting with the physical environment. For example, learning offline from 

historical logs of data has proven to be an effective way to get the RL agent up to speed, such that 

when it is deployed online, it is performing relatively well and safely. However, the historical 

controller (usually based on existing rule-based methods) is typically conservative and suboptimal, 

and therefore learning is typically restricted.  

Interpretability and reliability 

As with most machine learning solutions, a RL solution is typically a black-box and the process 

taken to obtain an output lacks transparency. In other words, the developer cannot clearly explain 

the steps and reasoning taken by the agent. Especially when an action/recommendation is 

dramatically different to what an operator may expect, they would typically need some reassurance 

of the reasoning behind the decision. This is difficult with RL models today. However, some 

research has focused on using interpretable methods (e.g. decision trees) to map to the learnt 

black-box policies (e.g. neural networks), which can help with interpretability in the final solution 

[17]. In terms of reliability, whilst RL solutions can typically provide optimal recommendations/ 

actions on average, the variability in responses can sometimes lead to unacceptable actions that 

lead to poor outcomes (e.g. a high penalty or negative reward). These instances can be difficult to 

explain due to the black-box and stochastic nature of RL. 
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3.2. HOW TRANSFER LEARNING AND DIGITAL TWINS CAN HELP ADDRESS 

CHALLENGES 

Many of the challenges highlighted centre around safety concerns, limited data, and the need for 

safe exploration. Two potential ways of addressing these challenges are utilising transfer learning or 

Digital Twins. 

Transfer learning is an area of ML that focuses on transferring the knowledge from a source 

environment to help accelerate the learning in a similar task environment. This means that an RL 

agent can be pre-trained with a large amount of data in a safe and controlled source environment. 

Once deployed in the target environment, it will not be as random and won't require as much data 

to achieve high performance. This is the same approach used in training large language models like 

ChatGPT; pretraining occurs in a source environment where the model learns a language by 

training on large amounts of data scraped from the internet. This understanding of the language 

can then be transferred to specific tasks and can be finetuned on a small dataset (e.g. customer 

service documents), allowing it to perform at a high level with minimal data and be optimised for a 

specific task.  

Transfer learning can be valuable when applied to RL in energy. For example, in the application of 

building controls, an RL agent could be trained in a source environment learning to reduce energy 

consumption for a particular occupant’s behaviour. This knowledge could then be transferred to a 

new target building with different occupant behaviour and accelerate learning when compared to 

starting from scratch. 

On the other hand, a Digital Twin can be defined as: ‘A digital model which integrates two-way 

data flow between the model and physical object or system, where making a change to one can 

change the other. For example, a control centre network map which displays real time system 

status and enables engineers to control assets to mitigate issues ‘[18]. 

In the context of RL, the RL agent can bridge this two-way data exchange between digital model 

and physical system. The main benefit of utilising a Digital Twin is the ability to safely explore and 

optimise a policy in a digital environment, whilst simulating thousands of iterations that would not 

be possible in the real world. The pairing of Digital Twins and RL is increasingly common in 

manufacturing and robotics [19], and there are also some use cases in industrial and commercial 

control systems which are discussed in Section 6.  

A possible Digital Twin and RL configuration is shown in Figure 3. The agent can train offline with 

the digital model, whilst simulating thousands of scenarios considering disturbances in the system 

and anomalies for the agent to learn to deal with. Once an optimal policy is found it can be pushed 

to the physical system to execute actions in the real world. Data is fed back to the RL agent in both 

cases, to learn and train on, but a higher importance weighting can be given to data generated 

from the physical system to account for any inherent discrepancies with the digital model. 

Essentially, this is a form of transfer learning as there are inherent differences between the 

simulated source environment (Digital Twin) and the target environment (real-world); this is also 

referred to as Sim2Real in the literature [20], which is an open area of research trying to address 

the challenge of closing the gap between simulation and reality.  
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Figure 3: Using Digital Twins alongside RL agents: an example setup. 

3.3. HOW DOES RL COMPARE TO ALTERNATIVE METHODS? 

Throughout this paper we discuss where RL can potentially outperform alternative approaches, but 

it is also important to know where it does not (at least at present). We highlight two alternatives 

commonly used in the use cases presented in the later sections: rule-based control and model 

predictive control (MPC)/optimisation. 

Rule-based 

Rule-based controls adopt the form of: ‘if x is true, do y’. For a relatively simple system which does 

not change unpredictably with time, a rule-based approach may be the best solution given that 

they are relatively simple to implement at low cost. They are also relatively easy to understand and 

maintain, and as a result are fairly widely used in industry. These are typically based on domain 

knowledge, such as a static rule increasing hot water temperature setpoints when it is colder 

outside to compensate for higher heat losses.  

Rule-based controls are therefore a useful benchmark when developing more complex algorithms 

such as RL. However, energy systems have the potential to be too complex and stochastic for this 

approach to achieve optimal performance. This is because rule-based approaches are typically not 

fully adaptive to the environment (e.g. complex weather patterns, building loads) and are therefore 

often not optimal.  

Model Predictive Control/optimisation 

MPC is a state-of-the-art method, like RL, which utilises a model to select optimal actions. MPC is a 

framework that typically consists of a model of a system which forecasts the future state of the 

system and then uses an optimisation-based solution method (e.g. linear programming, mixed 

integer programming, evolutionary algorithms) to determine the optimal control parameters that 

will maximise/minimise the desired objective function. Once the optimal control actions are pushed 

to the physical system, actual measurements are fed back to update the model, and the process 

repeats into the next timestep. Figure 4 illustrates this process.  
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Figure 4: MPC framework schematic 

Note that optimisation techniques can also be used without a model in some applications, such as 

in the unit commitment problem described in Section 7.6. We loosely use MPC and optimisation 

interchangeably in this paper to keep categories simple and since they share the commonality of 

the optimisation techniques described above. 

Comparison 

Many control systems today use rule-based methods, rather than MPC or RL. These have the 

significant advantage of being transparent and comparatively easy to understand and refine. 

Where the complexity and coupling between systems are low enough for system behaviours to be 

relatively stable and predictable, rule-based methods are probably to be preferred. 

However, for advanced control problems where the system behaviour is less straightforward, MPC 

and RL are potentially more suitable. Comparisons of the two are rare, and if done, they are often 

biased towards one of the communities, using the other as a ‘strawman’. The debate is quite 

contentious and nuanced, but we try to distil the differences here and highlight where one has an 

advantage over the other. The reader is referred to [21] for a more technical comparison. 

One of the key differences between MPC and (model-free) RL is how tightly coupled the model, 

objective, and optimisation are1. 

For MPC, the optimisation is tightly coupled with the model and the objective function. This means 

that changes to the mathematical formulation of the model or objective function (for example 

introducing non-linearities) can dramatically affect the design of the optimisation algorithm and 

how well the optimisation performs.  

What this means in practice is that the computational time/cost of obtaining the solution is often 

the dominant constraint, and the design choices around the model and objective function end up 

 

1 Note, RL tends to use different vocabulary than MPC, but for the purpose of this comparison, objective 

function and reward function, and optimisation and learning/training are analogous. 
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being made with the aim of keeping the problem tractable using the available optimisation 

algorithms. 

In contrast, with model-free RL the optimisation (RL agent) and the objective function are only very 

weakly coupled, with design of the RL agent not fundamentally depending on the mathematical 

formulation of the objective function. The model of the environment and the RL agent are 

completely decoupled – the RL agent considers there to be an external environment and is 

completely agnostic to whether this is the real world or a Digital Twin/model. 

This results in several differences in practice, detailed in Table 1. 

Table 1: Comparison of alternatives 

Rule-based MPC Model-free RL 

Requirements for a model  

• Does not require a model of 

the system 

• Rules may or may not be 

transferrable between similar 

systems 

• Requires an accurate model 

of each system (often 

physics-based, but can also 

be data-driven) 

• Complexity of model is 

limited by tractability of 

optimisation 

• Developing and maintaining 

these models (physics-based) 

requires domain expertise 

and is often time-consuming 

and expensive 

• Models may not transfer well 

between similar systems 

• Does not require a model of 

the system 

• Can benefit from an accurate 

model of the system (e.g. 

Digital Twin) [23] for offline 

training (and complexity of 

the model is not limited) 

• Transfer learning may enable 

RL agents to transfer easily 

between similar systems 

Online vs offline computational cost 

• All computational cost is 

online (i.e. at decision time) 

• Computational cost/time is 

very low 

• All computational cost is 

online (i.e. at decision time) 

• Online computational 

cost/time is significant and 

often a limiting factor 

• Most of the computational 

cost can be shifted offline 

with pre-training 

• Online computational 

cost/time can therefore be 

low 

• Offline computational (i.e. 

training) cost/time can be 

very high, depending on 

complexity of state space 

Flexibility in definition of objective/reward function 

• Objectives are narrow 

(individual rules/constraints) 

• Objectives can be general / 

high-level 

• Mathematical formulation of 

objective function often 

limited to certain analytical 

forms by the requirements of 

optimisation algorithms 

• Very high flexibility in reward 

function 

• Very few limitations on 

formulation or scope 

• Easy to incorporate human 

feedback directly into reward 

Interpretability and human understanding of the system 

• Very easily interpretable 

• Iterating on rules naturally 

improves human 

understanding of the system 

• Largely interpretable 

• Easy for people to refine 

model based on domain 

expertise 

• Less interpretable 

• Refinements and tuning are 

less directly linked to domain 

expertise 
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(mental model) over time – 

particularly around edge 

cases 

• Refinements to model 

naturally improve human 

understanding of the system 

(mental model) – particularly 

around system dynamics, but 

also edge cases  

• Refinements do not naturally 

link to and improve human 

understanding of the system 

(mental model) due to black-

box nature 

Inclusion of uncertainty 

• Difficult to factor in 

uncertainty/randomness 

• Typically, methods are 

deterministic and do not 

account for uncertainty. 

• Uncertainty/randomness can 

be included (e.g. via 

stochastic MPC), but must be 

explicitly modelled (which 

comes with computational 

cost)[24] 

• Uncertainty/randomness 

implicitly included within 

learning 

Optimality measurement and constraint guarantees 

• Typically not optimal 

• Cannot measure how far 

from optimal a solution is 

• Can guarantee constraints 

(i.e. rules) are satisfied 

• Can guarantee an optimal 

solution (to a strict 

mathematical formulation of 

the problem) 

• Can measure how far from 

optimal a solution is 

• Can guarantee constraints 

are satisfied 

• Solutions are often close to 

optimal 

• Cannot measure how far 

from optimal a solution is 

• Cannot guarantee constraints 

are satisfied 

Prediction horizon 

• No prediction • Finite in length due to 

computational cost 

limitations. This can 

potentially lead to 

suboptimal solutions if 

rewards are sparse, which 

creates a short-sighted view. 

• Effectively considers an 

infinite horizon as future 

rewards are discounted (e.g. 

similar to the time value of 

money in finance) 

 

Though RL has the potential to be better suited in certain applications, it is less mature and often 

underperforms when compared to MPC/optimisation methods (as some use cases will show), and it 

can be difficult to justify the additional costs and complexity over existing rule-based methods. In 

fact, combinations of two or more of these approaches can often exploit individual strengths and 

outperform any single approach [22]. For example, in practice RL is often augmented with rule-

based constraints to prevent completely unacceptable behaviours – as can be seen in some of the 

case studies in Section 6.  

Similarly, model-based RL (which is not included in the table above) starts to blur the boundaries 

between model-free RL and MPC. It includes a model of how likely different actions are to cause 

transitions into different states, and uses this to do forward-looking short term predictions of the 

rewards from various actions (like MPC), and factor these into its decision-making alongside the 

learned rewards from historical actions (using RL). This leads to higher online computational costs 
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when compared to model-free RL (whilst still being lower than MPC), but maintains the flexibility in 

reward function and ability to learn long-term policies from model-free RL.2 

RL is, however, a very active area of research and so there may be key breakthroughs in coming 

years that result in significant improvements in performance. As shown in Figure 5, which is taken 

from reference [22], whilst MPC research has grown linearly in recent years, RL research shows 

signs of growing exponentially, suggesting that RL could continue to advance at a faster pace.  

 

Figure 5: Number of academic publications for MPC and RL over time, figure by Perera and Kamalaruban (2011) [22]  

 

2 Note that there is some ambiguity in terminology here – sometimes model-based RL effectively refers to 

training model-free RL using a simulated environment (e.g. a Digital Twin), in which case it shares the same 

advantages and disadvantages as model-free RL. 
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4. Framework for using RL 

Here we provide a general guide for the reader to follow to determine whether RL is a potential 

solution to a business problem.  

(1) Determine if the problem can be framed as an RL problem. 

Must haves for a problem to be solved with RL 

 

 

 

 

 

 

 

 

 

Additional considerations for RL implementations 

 

 

 

 

(2) Determine if RL is an appropriate choice over other methods. 

RL is less mature than rule based or MPC approaches, and so when RL is likely to work well is less 

understood. A potentially effective way of identifying promising RL applications may therefore be 

to consider where alternative approaches struggle and RL, in theory, would not. At a high level, the 

following are probably a good initial filter for RL applications: 

 

Sequential decision-

making process 

The goals that you 

are trying to achieve 

can be quantified (i.e. 

scored numerically). 

Mathematically 

defined reward 

Enough data to 

adequately define the 

environment state and 

reward at each 

timestep 

 

Definable action space 

Data exists that 

would allow you to 

measure the impact 

of actions on the 

environment. 

This may be a 

discrete (on/off) or 

continuous (charging 

between empty and 

full) action space. 

This affects the 

algorithm you design.  

The problem can be 

framed as a series of 

decisions about 

actions that are made 

based on 

observations of the 

environment. 

Offline training in a 

simulated 

environment  

Frequent feedback 

Not always safe to 

implement a model-

free algorithm in the 

real-world. You may 

need a safe space for 

the agent to learn 

and make mistakes.    

More frequent 

feedback will allow 

the agent to learn 

faster.     

Large amounts of data  

If there is uncertainty in 

the input data or 

stochasticity in the 

process, it is important 

that you have lots of 

training data to avoid 

random fluctuations 

having a big influence.     

Less worried about 

interpretability 

The motivation 

behind the actions of 

RL agents is typically 

not identifiable, 

especially if the 

algorithm involves 

neural networks.   



PROSPECTS FOR REINFORCEMENT LEARNING – A GUIDE FOR ENERGY SECTOR APPLCIATIONS 

 

 

Page 15 of 40 

 

(3) Start simple and experiment first. 

To mitigate safety concerns and understand the performance of the RL agent, consider starting 

with a human in the loop implementation where the RL agent recommends actions, and a human 

user ultimately makes the final decision. This is particularly useful it can be harder to identify 

potential edge/failure cases for RL in advance, and real-world testing may help identify these. This 

implementation works well with supervisory level control, where the action or recommendation is a 

setpoint (e.g. temperature setpoint with HVAC). This keeps things simple as the RL controller does 

not need to directly control the modulation of a heat pump for example; this is left to a simpler PID 

(proportional integral derivative) controller. A general schematic of various levels of autonomy in 

RL enabled systems is illustrated in Figure 6. 

 

Figure 6: Levels of autonomy for RL enabled systems. (Left) human operated, rule-based control or another human-

interpretable optimisation control system should be considered first. (Middle) ‘Human in the loop’ still utilises human 

intervention to assess recommended actions from the RL agent before implementing. (Right) Fully autonomous system, 

where errors in the system are still monitored by humans but, in general, RL is doing a good job.   

(4) Collaborate with users, stakeholder, and experts:  

Applying RL to solve energy related problems requires collaboration amongst domain experts and 

ML specialists. This was apparent in many of the use cases. Additionally, it is important to engage 

with the end users (sometimes the domain experts) and stakeholders as they are the ones who will 

need buy in for the risk concerns and business case. Domain experts are particularly important to 

engage with when considering the reward function and thinking about edge cases, as there may be 

pitfalls that are obvious to them but not to an ML specialist. 

Marginal
improvements/ high 

return
RL is likely to be costly (e.g., training, 
Digital Twin) and therefore 
applications where marginal 
improvements result in high returns 
are more likely to justify the costs.

Numerous heterogenous 
systems

If there are numerous heterogenous 
systems and it is not economical to 
develop individual models/Digital 
Twins, then model-free RL and 
transfer learning can potentially be a 
scalable solution.

Complex system
The system is complex, non-linear, 
influenced by many variables, and/or 
evolving, so alternative model-based 
approaches struggle to adequately 
capture the system dynamics.

Uncertainty
If the problem has a high degree of 
uncertainty coming from many 
different sources, RL may be able to 
incorporate this more effectively than 
alternatives.

Quick decision making
If the application requires fast 
decision making, then RL can be 
preferable over alternative advanced 
strategies like MPC.

Human feedback 
If the reward would benefit from 
incorporating human feedback, then 
RL can be more flexible at handling 
this compared to alternatives.
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5. How RL can benefit the energy sector 

Reducing wasteful energy consumption and carbon emissions is talked about extensively as a 

necessity to reach Net Zero targets, and to reduce energy costs for consumers, which have reached 

a record high in Great Britain. Optimising energy consumption is a difficult problem to address for 

several reasons: the increasing penetration of intermittent (usually weather dependent) renewable 

energy sources makes generation more difficult to predict; consumers’ actions are stochastic in 

nature making demand difficult to predict; and demand is evolving with an increased uptake of 

new electricity-intensive technologies, e.g. electric vehicles (EVs) and heat pumps.  

Steps towards finding a solution to this problem require a control strategy which considers the 

factors that influence both electricity demand and generation. This optimisation can happen at the 

small-scale: increasing energy efficiency of individual buildings; medium-scale: optimising the 

energy consumption of small energy systems which connect multiple consumers and generation 

facilities; and at the large-scale: improving the interactions between different energy systems, or 

managing a large scale network. RL is considered an exciting potential solution given that it is 

useful for complex systems where the interplay between the many influential factors is too difficult 

for a human, or simple algorithm, to optimise. For example, in a game of chess there is not one 

solution to the problem, instead the solution depends on how the game evolves. Optimising 

energy consumption is similar since the moves taken by the algorithm (such as drawing energy 

from the grid) depend on what the environment looks like at a given time, like the state of a chess 

board during a game. The optimisation problem will need to consider the complex interplay 

between demand, generation, and demand side response simultaneously, and potentially their 

forecast predictions. One important factor that must be considered in any optimisation strategy is 

the fact that consumers have different preferences/requirements in the way they use energy which 

need to be addressed. RL algorithms can be used to learn and/or directly consider consumer 

preferences. 

Whilst the aforementioned applications of RL in the energy sector are exciting, many are likely 

years or even decades away. However, we are starting to see some promising use cases of RL 

within industry today. Figure 7 illustrates the landscape of potential near-term and future 

applications of RL within the energy sector and in the next section we present specific industry and 

academic examples to showcase each use case.  

 

Figure 7: Landscape of near-term and future applications of RL within the energy sector. 

Near-term        Future 

   

Have been implemented in industry. 

Are yet to be deployed in industry.  

General 
business 
problems

Recommender systems

Industrial/ 
commercial 

control systems
Data centre cooling, 

industrial process 
control 

Domestic 
energy 

management
DSR, HVAC control, EV 
charging scheduling.

Large-scale 
energy systems
Power networks, smart 

grids
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Despite being an immature technology that is frequently not yet ready for production, we see RL 

penetrating other industries, such as the tech sector, faster than in energy. This would be consistent 

with the broader trend of ML in general, since the energy sector has been a slow adopter of ML. 

Ultimately, this could indirectly benefit the energy sector as RL can address general business 

problems that are not industry specific, such as utilising recommender systems or language models 

to support customers of an energy supplier.  

In the energy sector specifically, we are starting to see industry applying RL to industrial and 

commercial control systems. These applications generally have higher margins and face lower 

barriers compared to domestic applications, which are still primarily in the research phase and 

subject to stricter safety regulations. Additionally, operating power networks and smart grids 

necessitates a high level of security, as any issues could impact many customers. Therefore, 

implementing RL in these areas is further from becoming a reality. 
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6. Successful use cases of RL in industry 

6.1. GOOGLE DEEPMIND 

DeepMind is an AI research lab that have recently focused on applying their expertise towards real-

world applications, such as understanding protein folding, identifying eye disease faster, and 

energy reduction in data centre cooling. They reported on the use of RL in reducing data centre 

cooling energy consumption by up to 40%; the solution was later productionised in multiple 

Google data centres with greater autonomy given to the RL controller [1], [23]. Building on this, 

they extended this work by conducting experiments in collaboration with a building management 

system provider, Trane, on two commercial building cooling systems [3]. 

Problem: A chiller plant typically provides the cooling to commercial buildings (similar to air 

conditioning in a home). The optimisation of a chiller plant is challenging as there is a trade-off 

between energy consuming components in the system. The chiller energy consumption decreases 

as the condenser water temperature decreases, but this comes at the cost of consuming more 

energy by the cooling tower fans—thus a balance must be met for optimal operation. On top of 

this, external and internal environmental conditions, and a large number of control parameters (e.g. 

setpoints and number of equipment) make the problem increasingly difficult to optimise. 

Alternative approaches: HVAC controls are typically rule-based. Setpoints are either fixed based 

on an operator’s experience or they can be adjusted on a reset schedule, where the setpoint can 

vary based on outdoor temperatures. MPC has also been explored in research and in limited 

industry applications. This often requires developing and maintaining expensive physics-based 

models for each building, which may not be scalable since buildings are very heterogenous.  

How reinforcement learning was applied:  

• States: Sensors (e.g. temperature, equipment statuses, etc.) 

• Actions: Setpoints (e.g. chilled water temperature) and on/off control of equipment 

• Rewards: Minimise chiller plant energy consumption 

First, the RL controller was trained offline on a log of historical data produced by the rule-based 

controller; this is typical in real-world examples as it is safer since no interaction with the real world 

is required. The RL controller was then deployed, allowing for exploration and improvement of the 

control strategy as it interacted with the physical system. The actions of the RL agent were simply 

automated setpoint recommendations to the building management system, which could be 

automatically overwritten with the rule-based controller if safety constraints were violated or if the 

operator manually decided to intervene.  

Key benefits: A 3-month experiment was conducted to compare the energy consumption between 

the RL and rule-based controller for 2 commercial properties. Two different experiments were 

conducted using different methodologies, resulting in approximately 9% and 13% energy savings. 

The RL controller was able to learn the optimal trade-off between chiller and cooling tower energy 

consumption. Interestingly the RL controller was also able to adapt to sensor miscalibration. 

Challenges and future thoughts: Several challenges were highlighted, such as learning from 

limited data, complex constraints, non-stationarity (e.g. equipment degradation and building 

occupancy changing over time), real-time decision making, and different operating modes. Success 

was dependent on extensive domain knowledge and numerous constraints. In the future, the 

authors suggest using detailed simulation environments to learn offline and transfer knowledge 
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(transfer learning) to overcome some of the limitations in training offline from limited historical 

logs. Incorporating direct human feedback in teaching the agent could be an area to explore.  

6.2. CARBON RE 

Carbon Re is a startup that has developed a software product (Delta Zero) that utilises RL to 

optimise cement production by reducing energy consumption and carbon emissions [2].    

Problem: Cement production is a complex process with constantly changing inputs (fuels, raw 

materials), conditions (state of equipment, shift changes), and competing priorities (throughput, 

control limits). A UK case study [24] identified a 7% variation in day-to-day energy consumption 

due to operational variations, implying potential energy saving opportunities if the plant could 

continuously operate like the ‘best days’. Key drivers to operational improvements consisted of the 

carbon footprint of the fuel, excess oxygen, and combustion properties of the fuel; optimising 

these drivers indicated a potential energy reduction of 8.5%—thus motivating the inception of 

Carbon Re. 

Alternative approaches: Traditionally, rule-based ‘Expert Systems’ are used for cement 

production. These systems are difficult to update with new rules, do not handle uncertainty well, 

and are limited in the number of factors considered (e.g. energy, emissions). Predictive process 

control and automation systems (or model predictive control) are also used extensively but require 

high-cost upgrades for automated controls, have limitations in their models, are expensive to 

upgrade and incorporate new features (e.g. exploiting alternative fuels, reduce emissions and 

material costs), and specialised training is required for operators. 

How reinforcement learning was applied:  

• States: Fuel mix (e.g. coal, waste, biomass), kiln (where thermodynamics and physical processing 

occurs) feed, etc. 

• Actions: Recommended process setpoints (e.g. kiln feed rate, fan speed, etc.) 

• Rewards: Reduce carbon costs whilst maintaining production and safety constraints. 

Carbon Re utilises a Digital Twin which is developed based on historical sensor data and uses this 

to train the RL agent by simulating 100 years of training in a single day. The final product is a 

‘human-in-the-loop’ solution where the RL agent makes process setpoint recommendations to a 

human operator to act on. 

Key benefits: The company reports potential energy savings of 10% and carbon emissions 

reduction by up to 20%. 

Challenges and future thoughts: A highly accurate Digital Twin played a key role in enabling a 

well-performing RL solution. Highly instrumented, closed processes like manufacturing lend 

themselves to accurate Digital Twins and therefore potentially RL solutions. The company also aims 

to utilise the Digital Twin to better understand and address maintenance issues like kiln blockage, 

which can result in costly downtime, as well as potentially evaluate capital investments.  

6.3. E.ON 

E.ON is one of the UK’s largest energy suppliers, with a global reach. E.ON is also a major windfarm 

player in many countries, and have piloted a dynamic yield optimisation project using RL [25] 

Problem: During the pre-construction phase of a wind farm, layout optimisation of wind turbines is 

utilised to minimise negative aerodynamic interactions (wake effects) between turbines, which 
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reduce power generation. However, residual wake effects still occur during operation which can 

result in power losses of a few percentage points. 

Alternative approaches: Typically, all turbines operate to maximise their individual power 

generation. The control strategy does not consider the trade-offs between reducing an individual 

turbine’s power generation to increase downstream turbine power generation via reduced residual 

wake effects. Computational fluid dynamics is a method that can model and simulate the 

aerodynamic phenomena described above. Conceivably, it could be used in an MPC framework, 

but can potentially be too computationally expensive to use for online control. Additionally, the 

model would be site specific and inflexible to changes in the wind farm environment. 

How reinforcement learning was applied: E.ON developed a simulation environment of the wind 

farm to test their RL algorithm. After a successful demonstration they piloted it in the field at the 

Champion wind park in Texas USA. The trial consisted of 3 rows of 3 turbines each, where the 

algorithm was able to learn within 20 iterations. The RL problem was framed as follows: 

• States: Wind direction and speed, turbulence intensity, curtailment level (blade pitch angle settings). 

• Actions: Curtailment level (blade pitch angle settings). 

• Rewards: Gain/loss in power with respect to nominal operation (no curtailment) for the same wind 

conditions. 

Key benefits: The average power increase of the 3 rows of turbines was 0.8% for the pilot project. 

Though the energy gains were small, when scaled to multiple wind farms this could be significant.  

Challenges and future thoughts: The current control only allowed for the changing of blade pitch 

angle. Future work can focus on adjusting the orientation of the rotor as well, which has shown to 

improve power output in research. 

6.4. MICROSOFT 

As a large, multinational corporation, Microsoft’s offices consume significant amounts of energy. To 

achieve their carbon targets they need to reduce this considerably. 

Problem: Microsoft looked to reduce energy consumption in their commercial buildings by 

changing the way the HVAC systems were operated [26]. 

How reinforcement learning was applied: Microsoft used their platform called Project Bonsai 

that enables engineers to build industrial control systems powered by AI [27]. It implements a 

technique called machine teaching [28], which utilises domain expert knowledge to accelerate the 

learning speed of the RL agent. HVAC experts worked with AI experts to design the objectives and 

constraints for the RL agent. 

• States: Outside air humidity, outside air temperature, etc. 

• Actions: Temperature set point, the speed of the pump delivering chilled water to the condenser 

unit, differential pressure between supply & return water flow pipe. 

• Reward: Reduce energy consumption while maintaining desired temperature.  

Key benefits: The company reported an expected (modelled) energy reduction of around 15%, 

with the RL agent learning within 2 weeks. The RL agent also uncovered counterintuitive 

recommendations to what a human would assume to reduce energy consumption such as 

increasing setpoints in the cooling tower and chiller and increasing pump speeds. 

Challenges and future thoughts: This is another example of a human-in-the-loop application of 

RL – the algorithm recommends new set points for building managers to implement. The company 
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sees further potential in optimising similar areas due to the success in changing only a few 

setpoints.  

6.5. EXAMPLES OUTSIDE THE ENERGY SECTOR 

Although the focus of this paper is the application of RL within the energy sector, there has been 

significant success in other areas which should be looked to in order to gain inspiration about how 

RL can be applied in the energy sector. Other industry applications include self-driving cars, 

robotics, healthcare [29], game playing, etc. [12]. We list some examples in Table 2. 

It’s important to recognise that companies within the energy sector can face similar business 

challenges and opportunities to any other sector. Customer facing energy companies can leverage 

recent advancements in RL applications in recommender systems and language models. In addition 

to optimising control systems, RL can also serve as an optimisation layer on top of traditional 

supervised learning models used in recommender systems and language models. For example, 

ChatGPT used RL with human feedback in the reward model to optimise a supervised learning 

language model for more human-like responses and to reduce toxic content. Similarly, Spotify's 

recommender system incorporates human feedback by learning which tracks are relevant through 

user song skipping. Traditional supervised learning-based recommender system can also be 

optimised with RL to balance a trade-off between exploiting existing user satisfaction and 

exploring diverse music content. Energy companies can adopt these AI solutions into their existing 

practices or experiment with them further using in-house data and RL techniques, thus building 

trust in the RL systems and explore additional use cases in the future. 

Table 2: Industry examples of applying RL. Note, we are unable to verify if these were used in production applications. 

Company Application Sector States Actions Rewards 

Royal 

Bank of 

Canada 

[30]  

Trade execution 

platform for 

multiple 

strategies 

Financial 

services 

200-plus 

market-

related data 

inputs 

Sell, buy, hold 

stocks 

To trade as close as 

possible to VWAP, a 

common price metric 

IBM [31] Financing trading 
Financial 

services 
Stock prices 

Sell, buy, hold 

stocks 

Profit/loss generated 

by each trade 

Spotify 

[32] 

Diverse content 

recommendations 
Entertainment 

Previously 

recommended 

songs 

Recommended 

track 

Maximise diversity 

and relevance of 

recommended track 

Salesforce 

[33] 

Text 

summarisation 
Technology 

Original long 

document 
Summary 

Used human labelled 

reference summary to 

guide learning 

DiDi [34] Order dispatching Ride hailing 

Number of 

idle vehicles, 

number of 

orders, 

location, 

destination 

Match driver 

to passenger 

Minimise pickup time 

and maximise 

revenue 

Deepmind 

[35] 

Game playing 

(AlphaGO/ 

AlphaZero) 

Technology 

Game board 

and position 

of pieces 

Next move of 

player 
Win game 

OpenAI 

[36] 

Large language 

model (ChatGPT) 
Technology 

Text prompt 

(e.g. asking 

questions) 

Text response 

(e.g. answers 

to questions) 

Fine tune language 

model with human 

feedback (e.g. remove 

toxicity, follow 

instructions better) 
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7. Promising use cases for innovators to be aware of  

Researchers are continuously working on delivering improved RL algorithms applicable to a wide 

range of use cases, making RL an exciting topic of conversation when it comes to thinking about 

innovation in energy management and control.  

Where Section 6 provides an overview of specific case studies where RL applications have already 

been shown to be successful in industry, this section considers future applications of RL within the 

energy sector. Key areas where RL applications could be most beneficial in the energy sector are 

discussed, based on the current state of academic research. Most of these relate to control of 

different systems, but it is worth noting that the use of RL with human feedback (RLHF) [36] also 

proposes significant opportunities—as highlighted in Section 4 and Section 6.5. RLHF looks likely 

to drive a paradigm shift in the way we think of RL. Whilst Deepmind's AlphaGo focused on 

removing human influence to achieve superhuman performance in gameplay, OpenAI's ChatGPT 

did the opposite by incorporating human feedback to improve language understanding. Both 

approaches are likely to have a role in future RL research, but RLHF has already demonstrated its 

potential in various energy-related applications. For example, learning from a occupants’ subjective 

thermal comfort in buildings through an app [21], and improving driver comfort in autonomous 

vehicles [37]. 

A summary of the methods described in this section of how RL can add value to energy solutions is 

shown in Table 3: promising use cases for RL in the energy sector, and what the focus of the 

optimisation (i.e. the reward function) could look like.  

Table 3: promising use cases for RL in the energy sector, and what the focus of the optimisation (i.e. the reward function) 

could look like. 

  

Application 

Optimisation goal focus

Cost Emissions Revenue 

(e.g., from 

flexibility) 

Asset 

Management 

 

EV charging 🗸 🗸 🗸 

Fleet EV charging 🗸 🗸 🗸 

Battery charging/discharging 🗸 🗸 🗸 

Smart appliance scheduling 🗸 🗸 🗸 

Heating and cooling system control 🗸 🗸 🗸 

System 

Management 

 

Whole home/building energy 

management 

🗸 🗸 🗸 

Wind farm design and operation 🗸  🗸 

Energy trading within local energy 

markets or microgrids 

🗸 🗸 🗸 

Generation dispatch and grid 

balancing 

🗸 🗸  

Energy pricing/bidding strategies   🗸 
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7.1. ENERGY MANAGEMENT FOR DEMAND FLEXIBILITY 

Consumers can save money by drawing energy from the grid at times away from when there is 

high-demand, or when the electricity price is low and energy from renewables is readily available 

[38]. When consumers shift their electricity consumption in this way, this is known as demand-side 

response (DSR) and it is used to prevent the grid from being overloaded (leading to power cuts); 

and to prevent the startup of emergency power supplies which run on greenhouse gases. DSR will 

become increasingly important as more consumers invest in electric vehicles (EVs) and electric 

heating solutions (e.g. heat pumps) intensifying the load on the grid. 

One way to maximise energy savings when participating in DSR would be to use a tool which 

automatically controls intelligent assets to shift and/or reduce their energy usage, or to 

automatically advise humans on what actions to take to optimise their energy use. Such algorithms 

must consider consumer comfort and consumer preferences (e.g. reaching the temperature 

setpoints determined by the consumer) whilst simultaneously optimising the demand for grid 

management. RL is invoked as a promising solution to this challenge given that it can learn human 

preferences which change over time and is further capable of adapting to specific environments 

which vary from building to building. The following sections consider RL applications to optimise 

assets in intelligent ways with the goal of either maximising their energy efficiency and/or to allow 

flexibility to initiate demand response.  

7.2. HVAC AND DHW SYSTEMS  

Heating, ventilation, and air conditioning (HVAC) systems and domestic hot water (DHW) systems 

are huge contributors to building energy consumption and, in most cases, these systems are 

managed by sub-optimal control systems which do not consider grid response mechanisms (e.g. 

simple rule-based control, or set by humans based on ‘a feeling’) and can result in significant 

energy wastage. 

RL solutions for optimising the energy consumption of the heating control of DHW systems [39], to 

optimise the control HVAC systems in office spaces [40]–[42],  and to manage commercial cooling 

centres [13] have all been tested in real, functioning buildings. The fact that, in each of these cases, 

the deployment of the RL solution led to a significant reduction in energy consumption (where the 

latter example is described in detail in Section 6.1) showcases the exciting potential for RL-based 

control. Promisingly, these successes are not limited to simple environments (e.g. a single isolated 

room) but include relatively complex buildings with multiple zones and floors [43]. However, this 

doesn’t mean the implementation of such RL algorithms into the real-world is trivial, nor does it 

mean that RL is always the optimal method for control: there is progress to be made towards 

developing RL-based solutions which have the potential to be productised so that any consumer 

can install these solutions in their homes or commercial buildings. A lot of this progress is being 

made by researchers, where many studies of HVAC and DHW control in simulated building 

environments (as opposed to real buildings) have been conducted e.g. [44]. In general, these 

solutions have been shown to be successful in saving 10 - 20% of building energy consumption.  

Large-scale deployment of RL solutions is a challenge due to variations in the physical properties of 

HVAC and DHW systems, variations in the buildings themselves (where even similar types of homes 

will differ in their capacity to retain thermal energy), and variation in occupant behaviour from 

building to building. Because of this, to achieve optimal control, agents monitoring different 

buildings may need to behave very differently from one another. When productionising an RL 

solution, large amounts of training data will be needed to allow for exploration into many different 

states for the agent to learn the best actions for each scenario. Another important point to note is 



PROSPECTS FOR REINFORCEMENT LEARNING – A GUIDE FOR ENERGY SECTOR APPLCIATIONS 

 

 

Page 24 of 40 

that many RL algorithms may need to be combined with rule-based methods to ensure that agents 

do not take actions which will be unsafe or cause occupant discomfort, which may be non-trivial to 

implement (see e.g. [45]).  

MPC has also made good progress in HVAC controls within buildings. Whilst fair comparisons 

between RL and MPC are rare, a study [21] was conducted in a simulated environment, which 

ultimately showed MPC outperformed RL in terms of energy costs and discomfort. However, a 

combination of the two methods showed comparable results to MPC. This potentially opens 

opportunities to learn perceived discomfort through human feedback, account for uncertainties 

(which was not incorporated in the simulator) and optimise over longer periods; these benefits 

could compliment the performance and interpretability advantages of MPC. In contrast to this, a 

similar study showed RL can potentially outperform MPC by up to 6% [46]. Thus, more comparison 

studies like these are encouraged and needed to better understand the methods. 

7.3. SMART APPLIANCES 

To initiate DSR, household occupiers may be incentivised to use their energy consuming appliances 

(e.g. washing machines, cooking appliances, lighting) at optimal times to reduce their electricity 

usage during peak times. RL can address the problem of optimising the DSR of individual homes 

by performing a scheduling assistant for smart devices. The scheduling of appliances to optimise 

energy consumption needs to be in line with the preferences of the consumer; this can be 

accounted for by determining whether the switching on of appliances is deferrable or non-

deferrable [47] and/or by incorporating consumer feedback directly into the algorithm [48]. RL 

provides a promising solution to such optimisation problems due to its ability to cope with 

consumer preferences and learn in a stochastic environment. RL has shown potential to outperform 

other algorithms [49], including MPC, however the training time for RL algorithms can be very long 

[50]. It is important to note that RL solutions tend to be developed assuming a single domestic 

consumer with multiple appliances, however there is often more than one consumer in a 

household which needs to be investigated. Furthermore, the consumer feedback incorporated in 

training during these studies is usually not real data but simulated data so before deployment it 

may be appropriate to use more realistic consumer feedback in training. Such feedback could be 

gained from testbeds such as the Living Lab [51].  

 

7.4. ELECTRIC VEHICLES 

Optimal approaches can be defined when it comes the charging of EVs. Since EVs consume 

substantial amounts of electricity, a consumer may want to participate in DSR by optimising the 

plug-in times for charging their EV at their property. Furthermore, during a journey, a driver may 

want to optimise how they charge their vehicles at public charging stations to simultaneously 

minimise the time required for travel and the charging cost. These optimisation challenges are 

difficult to solve given the variability in the departure and arrival times of the EV and the 

requirement for the EV to be charged fully before departure. Further complications come with the 

variation in traffic conditions and waiting times for EV chargers. RL is shown to be an effective 

solution given its ability to adapt to consumer preferences and reach a solution even without 

having prior knowledge about the randomness [52].  

 

RL can be further used to optimise the charging a fleet of EVs where the charging properties of the 

vehicles which vary from vehicle to vehicle (e.g. battery size) are unknown [53]. Day ahead charging 

plan solutions can also be addressed with RL. In [54], a simulated environment is used to show that 

their RL solution gives results comparable to an optimisation method called stochastic 
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programming in which the details about the charging of cars is needed to be known, unlike in the 

RL case.   

 

A further use for RL is to optimise hybrid vehicles [16]. The challenge here is to increase fuel 

efficiency whilst driving even when the driving conditions vary from journey to journey, and so can 

the style of the driver. RL can be used to optimise without giving the algorithm information about 

the route to be driven [51] [55]. RL solutions can improve on the standard performance on HEVs, 

but it is important to note RL is only one method to get an optimal solution here [56], and optimal 

solutions reached with RL are close to those reached with dynamic programming [57].  

 

7.5. ENERGY TRADING  

Local Energy Markets (LEMs), where electricity is generated, bought, traded, stored, and consumed 

in a decentralised manner, are expected to play a significant role in helping us reach a Net Zero 

energy system [58]. The future electricity grid will need to be able to cope with the increased 

uptake of EVs and electric heating technologies which come with the transition to Net Zero and 

reach the demand from volatile renewable sources. LEMs provide a solution by locally establishing 

a balance between generation and consumption which would otherwise be a struggle on a 

centralised national distribution grid. RL comes into play to facilitate an intelligent market by 

having agents which are responsible for determining an optimal pricing strategy for household 

bidding, and agents which are responsible for trading [59]. In [59], the RL algorithm is rewarded for 

achieving low energy prices during times of high renewable energy generation and higher energy 

prices when the consumption is high (to encourage DSR) in a simulated environment. RL is also 

seen as a promising solution for trading between these microgrids to reduce energy prices and 

maximise profits [60]. Drawbacks of the solutions in the literature are described in the relevant 

papers and overall further research needs to be done before it can be well established that RL 

solutions will indeed provide optimal solutions in a real-life LEM scenario.   

In general, the RL techniques applied to the financial sector for trading (see Table 2) are naturally 

extendable to energy trading. RL algorithms can learn a trading strategy to determine when to buy, 

sell, or hold assets from its experience of market behaviours.  

7.6. LARGE-SCALE MANGEMENT OF ENERGY SYSTEMS 

A lot of work has focused on the implementation of single RL agents aiding the management of 

individual buildings and their associated assets, or a small complex of similar buildings. However, 

what about if you want to consider the optimisation of a smart grid system where lots of houses 

are connected? This is a more difficult challenge given the increased complexity of the system 

where the individual domestic and industrial properties require very different treatments relative to 

each other and will have different reward functions to optimise. To increase the penetration of 

renewables into the energy system through low carbon tech and flexible demand maintained by 

DSR solutions, the future system may comprise local energy markets which are interconnected and 

individual consumers are able to trade energy generated by, for example, their solar panels, back to 

the grid. This enhances the complexity compared to a large-scale centralised system, where the 

optimisation of the distribution may be best addressed with RL. Furthermore, as technological 

advances are made which enable long-term storage of electricity, there is a question as to how to 

best manage the charging and discharging of batteries to maximise energy generation through 

renewables.  

Progress is being made in this area by the set-up of OpenAI Gym Environments, such as CityLearn 

[61]. These environments allow anyone to build algorithms to optimise the control of energy 
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distribution in the environment, mimicking a simplified version of the real-world energy systems. 

Challenges posed to the public have led to the development of novel algorithms progressing the 

field further [62]. Promising results have been shown for RL to reduce peak demand on smart grids 

using energy storage and avoid a ‘rebound effect’, where the lack of coordination leads to shifting 

a peak in time rather than reducing it [63]. Additionally, transfer learning methods have shown 

promise in addressing the challenge of limited samples of data, as you can transfer the learnings of 

one building to another and get up to speed quicker [64] . However, RL still was outperformed by 

optimised rule-based controllers [10] and adaptive optimisation methods [65] indicating further 

research is required. More recently, a competition was conducted to encourage creative and 

collaborative approaches to the CityLearn problem [66]. Many of the top solutions employed a 

combination of RL, MPC, and rule-based approaches, further supporting the convergence of a 

hybrid method capitalising on the benefits of each method. 

Perhaps the ultimate application of RL to the energy sector is in dynamically balancing the whole 

electricity network. Demand and supply need to be perfectly balanced for the grid to remain stable, 

and this involves manging multiple electrical parameters like power and frequency simultaneously, 

over a range of timescales from days and hours down to seconds. This is becoming increasingly 

difficult as renewable and embedded generation becomes more widespread and transport and 

heating increasingly electrify. As a result, the cost of doing so is increasing, with system balancing 

and constraint costs in Great Britain rocketing in recent years [67] to £4.2bn in 2022. This poses a 

significant opportunity for RL.  

Production applications of RL to this problem are probably many years in the future, but early 

research in this area is already occurring. The Learn to Run a Power Network competition [68] 

focused on learning to find the optimal network topology to relieve network congestion at 

minimum costs whilst preventing cascading failures leading to blackouts. Additionally, a similar 

application is choosing the optimal power generator dispatching schedule for a network (known as 

the unit commitment problem). RL was shown to outperform existing optimisation methods for this 

problem [69]. However, when conducting a more rigours comparison (including stochastic 

optimisation), RL underperformed [70]. Nonetheless, RL demonstrated clear superiority in terms of 

online computational time, which is likely key for managing large systems in real time. Once again, 

a hybrid approach was shown to outperform both methods individually. 

Due to the safety critical nature of the grid and the extremely high consequences of failure, 

progress in this area is likely to be very cautious, and the human-in-the-loop approach is likely to 

dominate. It does, however, present an exciting opportunity for RL as the technology matures. 
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8. Risks and ethical considerations 

Use of RL shares many of the risks and ethical considerations that arise in the use of AI in general, 

which are covered at length in other reports e.g., [71]–[74]. This section focuses those that are 

particularly important for RL (and applications of RL in energy). 

The greatest risk with RL is that it successfully optimises for something that we do not actually 

want. In other words, people specify the reward function in a way that does not adequately capture 

everything we value. This is known as the alignment problem [75]. The consequences of 

misalignment can be minor – an amusing loophole the AI finds that is easily fixed – or critical – a 

system actively causing harm to people. 

Achieving alignment is often very difficult technically. It is hard to robustly specify objectives in a 

reward function that does not leave loopholes for the RL agent to exploit, and there are many 

examples of specification gaming [15] and reward hacking in RL systems. It is, however, even more 

difficult from an ethical and philosophical perspective. There is no universally accepted ethical 

framework, and disagreements on what is right - and optimal for society - are widespread. 

Developers of AI systems that are optimising for ‘something’ therefore have a responsibility to 

consider the ethical implications of what they are optimising for. 

Some of the ethical considerations that are particularly relevant for RL are: 

• Autonomy and control – to what extent should individuals have control taken away from them? 

• Bias and fairness – are different groups treated fairly by the system? Does the algorithm perform 

equally well for different groups? 

This may sound very abstract and academic, so the example below considers a typical use case in 

energy. This example also draws out two further risks: 

1. An RL agent may learn to operate well on the data and situations it is trained on, but when it 

encounters situations that are dramatically different from those it has encountered before, it may 

produce completely unacceptable solutions and/or take a long time to learn how to handle those 

situations. 

2. Multiple RL agents that have different objectives but are controlling overlapping systems may 

demonstrate unexpected or undesirable behaviour as they feed into each other’s feedback loops. 

This is particularly important in the energy sector, where RL could conceivably be employed at 

multiple levels simultaneously, from individual devices to whole home energy management, to 

energy trading and grid balancing. How RL agents behave when interacting with other agents in the 

wider system is important to consider and test. 

To illustrate all of these, let’s consider a typical use case in energy: an RL agent designed to 

optimise heating in a home. We’ll work through a hypothetical deployment of RL in this use case. 

At a high level, the RL agent is given the objective of minimising energy costs whilst meeting the 

temperature set points provided by the occupants. This seems straightforward, but then the 

question arises of how precisely the set points must be met. Is a tolerance of +/-1 degree ok? The 

wider the tolerance, the more flexibility the RL agent has to reduce energy costs. But different 

people may have different acceptable tolerances. 

Fortunately, RL is well suited to adapt to this – it can include human feedback in the reward 

function. The obvious thing to do is allow quite wide tolerances but add a penalty for every time 

that an occupant adjusts or overrides the set points (as that is an indicator they are uncomfortable). 

However, there are multiple occupants in the home and they have different heating preferences 

(for example, men may prefer a lower temperature to women [76]). Not only that, but they have 



PROSPECTS FOR REINFORCEMENT LEARNING – A GUIDE FOR ENERGY SECTOR APPLCIATIONS 

 

 

Page 28 of 40 

different access to (and comfort with adjusting) the digital controls for the thermostat (with men 

being more likely to dominate the control [77]). As a result, the RL agent learns to optimise for 

preferences of the occupant who more frequently adjusts the controls, resulting in an unfair 

outcome. 

Realising this, the reward function is adjusted to place less weight on thermostat adjustments 

(although this won’t mitigate the issue fully). Since the manual adjustments often increase energy 

costs (which it is highly penalised for), and the adjustments are only weakly penalised, the RL agent 

learns that if it ignores the adjustments for several weeks the occupants will eventually realise their 

feedback is having no impact and give up trying to make adjustments – which means the RL agent 

no longer suffers a penalty for them. The RL designer eventually works out a way to prevent that 

happening, and the RL agent is rolled out to heating controllers across the country. 

At this point two things occur. Firstly, the RL agent encounters a heat pump for the first time 

(having been trained on homes with gas boilers). Not only does the heat pump have a peak 

efficiency when used in a different pattern compared to a boiler, but it also contains its own 

internal RL agent that aims to not just maximise efficiency, but also minimise stress on the 

components of the heat pump to improve reliability. The goals of the two RL agents (home heating 

controller and heat pump) aren’t fully compatible and they proceed to have a tug of war over 

control which leads to high energy costs and more rapid deterioration of the heat pump. 

Secondly, the RL agent is deployed in the home of someone experiencing financial hardship. They 

are very tightly constrained by finances, and are often making trade-offs between heating and 

food. Having control is very important to them, and they make very frequent adjustments to the 

thermostat based on current finances, rather than comfort. The RL agent is designed to minimise 

cost whilst meeting the target temperature set points, not to minimise discomfort whilst meeting a 

fixed budget. It also can’t cope with so many changes to the thermostat settings that aren’t 

obviously related to comfort, so it produces a poor, suboptimal solution that costs the consumer 

significantly more than manual control would. 

As this example illustrates, employing RL in a robust and ethical way takes considerable thought 

and care. Innovators developing RL solutions should make sure to invest sufficient time in this, and 

identify people with appropriate expertise to support that – for example experts in AI risks and 

ethics. It is also important to consider and engage a broad range of stakeholders from an early 

stage – including a diverse set of end users and consumers. 
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9. Conclusions 

Reinforcement Learning is a powerful tool for optimising control methods throughout the energy 

sector. Its ability to learn through a trial-and-error approach allows it to be implemented without 

the developer having a detailed knowledge of the physics underlying a system, or relationships 

between different variables within a system. This is particularly useful when dealing with complex 

systems with lots of variables which are difficult to model.  

For innovators, there are some key use cases throughout the energy system which could potentially 

benefit from RL solutions. These include drawing inspiration from RL applications within general 

business problems, industrial and commercial control systems, scheduling of household appliances 

and EV charging, control of HVAC and DHW systems, and enabling the systems to participate in 

demand-response initiatives to reduce load on the grid. Although the maturity of many RL 

implementations is still at an early stage, the increasing complexity involved in balancing 

distributed renewable generation and flexible demand means that the benefits of smart, 

autonomous, reinforcement-learning solutions are likely to steadily increase. 

Whilst RL offers much promise for the energy sector and decarbonisation, much work remains 

before it can be fully realised. In particular, our collective understanding of where RL is the best 

solution and how to get the most out of it remains relatively limited. Therefore our call to action is 

to contribute to developing this understanding by: 

• Industry: As much as possible, share challenges and successes of real-world implementations of RL 

— see Deepmind’s work [13] as an example. Consider sharing datasets that can be used to develop 

RL solutions. 

• Academia: Conduct fair comparisons between RL and alternatives (e.g. MPC/optimisation) to better 

understand where RL might excel in the future and understand how they can potentially 

complement each other.  
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